Immersive Learning: The Teacher Is Still the Teacher

The creators of the Scientopolis immersive science environment have created an interactive world where students can learn science by controlling virtual avatars in a medieval town (Immersive Education, 2012). As students make their way through the immersive learning activity, they use data from a variety of sources, including information provided by the simulation itself, which students can analyze using built-in data table and graph generators (Immersive Education, 2012). Of course, even though the students’ avatars are trapped in a virtual world of the past, the students themselves have access to an internet-connected computer, so they can also take full advantage of the research potential of the devices they have at hand.

Ideally, a teacher should structure a learning activity using this software in a way that requires students to synthesize information from a variety of sources. In the Scientopolis weather scenario, for example, students must devise a practical solution for a multi-year drought based on simulation data and their own understanding of meteorology from their science lessons (Immersive Education, 2012). If I were using this tool in my own science classroom, I would try to present the problem as a complex one that has more than one plausible answer; that way, students would be forced to make difficult decisions based on careful cost-benefit analysis. This unit on drought would be particularly relevant to my students, who live in California’s Central Valley, where the entire population is quite familiar with the challenges a community faces when water is in short supply.

An immersive and complex learning experience should contain assessments that are also immersive and complex. Formative assessment is crucial in such a learning activity. It may be tempting for a teacher to assume a back-seat role while students are working independently in their virtual worlds, but that would be a mistake. Just because students are learning by doing in an online environment, it is still the teacher’s responsibility to make sure that students are on-track towards meeting the project’s predetermined learning goals. In the specific case of the Scientopolis module, a teacher might use a variety of periodic checks for understanding, including quick surveys at the end of each daily lesson, or perhaps a longer paragraph writing prompt that asks the student to summarize progress towards the objectives. Also, teachers should not forget to check in, face-to-face, with students on a regular basis.

These formative assessments should then be used to make any necessary adjustments as the project unfolds. A teacher may discover, for example, that the project timeline may need to be adjusted, or some struggling students may need to be provided with strategic hints in order to catch up. Also, teachers should have one or more enrichment activities ready to assign in case one or more advanced students complete their projects early.

When it comes to summative assessment, teachers should not rely solely on multiple-choice or similar objective tests when students complete an immersive learning experience. After all, much of what the students learn would be impossible to measure with multiple-choice test questions anyway. Ideally, students should be asked to demonstrate their learning by completing a practical project. In the drought example mentioned above, for instance, students might prepare a real-life narrated multimedia presentation about climate change and drought for a real-life town hall meeting. Such an assessment would require a carefully constructed rubric to ensure that students clearly understand the teacher’s expectations before they begin work. As Palloff and Pratt (2009) explained, rubrics can also help minimize the chance of conflict and disagreement about project grading (p. 70). Thus, by careful design, a teacher might use an immersive resource like Scientopolis to teach valuable critical-thinking skills while motivating students to achieve at higher levels.


Immersive Education. (2012, June 12). iED 2012 save science [Video file]. Retrieved from

Palloff, R. M., & Pratt, K. (2009). Assessing the online learner: Resources and strategies for faculty. San Francisco, CA: Jossey-Bass.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s